The Impact of Receiving Government Funds on Indications of Financial Data Falsification

Main Article Content

Hestie Fagie


Falsifying financial data is a terrifying finance scourge that "front burners" to discuss. Many people still think that financial data fraud only occurs in profit-oriented organizations. However, it can also happen to non-profit organizations such as universities. Based on ICW data for 2006-2016, there were 37 corruption cases with 14 procurement cases. Other research also explains the procurement of goods and services that are not based on Purchase Order specifications and costs given to the purchasing department. The study focused on whether there were indications of financial fraud and the effect of receiving government funds on indications of university financial fraud. The research method used a questionnaire and analysis of the financial statements of selected universities. Data analysis used the benefit index ratio and regression analysis. The results showed 21.93% of the total answers from 43 respondents stated that they found indications of falsification of financial data in tertiary institutions and from 8 colleges 1 was declared a manipulator, 3 were declared a gray organization. Meanwhile, he explained that the receipt of government funds did not affect indications of falsifying higher education financial data.


Download data is not yet available.

Article Details

How to Cite
Fagie, H. (2021). The Impact of Receiving Government Funds on Indications of Financial Data Falsification. Journal of Contemporary Information Technology, Management, and Accounting, 2(1), 1-11.
Research Articles


Undang-Undang Nomor 12 Tahun 2012, (2012).
Aisyiah, H. N., & Ahzar, F. A. (2017). Ex Ante Audit Sebagai Upaya Pencegahan Fraud. AKRUAL: Jurnal Akuntansi, 9(1), 54.
Cahyaningtyas, R. I., & Achsin, M. (2018). Studi Fenomenologi Kecurangan Mahasiswa dalam Pelaporan Pertanggungjawaban Dana Kegiatan Mahasiswa: Sebuah Realita dan Pengakuan. Jurnal Ilmiah Mahasiswa Fakultas Ekonomi Dan Bisnis UB, 3(2).
Christian, N., Basri, Y. Z., & Arafah, W. (2019). Analysis of Fraud Pentagon To Detecting Corporate Fraud in Indonesia. International Journal Of Economics, Business and Management Reasearch, 3(08), 1–13.
Christy, Y. E., & Stephanus, D. S. (2018). Pendeteksian Kecurangan Laporan Keuangan dengan Beneish M-Score pada Perusahaan Perbankan Terbuka. Jurnal Akuntansi Bisnis, 16(2), 148.
Haliim, W. (2020). Problematika Kebijakan Dana Hibah dan Bantuan Sosial Sumber APBD: Relasi Korupsi Terhadap Kekuasaan Kepemimpinan, dan Perilaku Elit. Inovasi, 17(1), 39–53.
Iswanaji, C. (2018). Mendeteksi Kecurangan Laporan Keuangan Menggunakan Beneish Ratio Index Pada Pabrik Cambric Yogyakarta. Jurnal Reviu Akuntansi Dan Keuangan, 8(1), 25.
Kourtis, E., Kourtis, G., & Curtis, P. (2019). Α n Integrated financial ratio analysis as a Navigation Compass through the fraudulent reporting conundrum : International Journal of Finance, Insurance and Risk Management, IX(1–2), 3–20.
Mahama, M. (2015). Detecting corporate fraud and financial distress using the Atman and Beneish models. International Journal of Economics, Commerce and Management, 3(1), 1–18.
Nugrahesthy, A., Hapsari, S., & Seta, D. W. (2019). Identifikasi Kecurangan Dan Whistleblowing Universitas. Jurnal Riset Akuntansi Dan Keuangan, 7(1), 131–144.
Peraturan Pemerintah Republik Indonesia No. 26 Tahun 2015, 151 10 (2015).
Ramadhan, D. (2020). Root Cause Analysis Using Fraud Pentagon Theory Approach (a Conceptual Framework). Asia Pacific Fraud Journal, 5(1), 118.
Shore, C. (2018). How corrupt are universities? Audit culture, fraud prevention, and the big four accountancy firms. Current Anthropology, 59(S18), S92–S104.
Vousinas, G. L. (2019). Advancing theory of fraud: the S.C.O.R.E. model. Journal of Financial Crime, 26(1), 372–381.